A Fast Algorithm for Recovery of Jointly Sparse Vectors based on the Alternating Direction Methods
نویسندگان
چکیده
The standard compressive sensing (CS) aims to recover sparse signal from single measurement vector which is known as SMV model. By contrast, recovery of sparse signals from multiple measurement vectors is called MMV model. In this paper, we consider the recovery of jointly sparse signals in the MMV model where multiple signal measurements are represented as a matrix and the sparsity of signal occurs in common locations. The sparse MMV model can be formulated as a matrix (2, 1)-norm minimization problem, which is much more difficult to solve than the l1-norm minimization in standard CS. In this paper, we propose a very fast algorithm, called MMV-ADM, to solve the jointly sparse signal recovery problem in MMV settings based on the alternating direction method (ADM). The MMVADM alternately updates the recovered signal matrix, the Lagrangian multiplier and the residue, and all update rules only involve matrix or vector multiplications and summations, so it is simple, easy to implement and much faster than the state-of-the-art method MMVprox. Numerical simulations show that MMV-ADM is at least dozens of times faster than MMVprox with comparable recovery accuracy. Appearing in Proceedings of the 14 International Conference on Artificial Intelligence and Statistics (AISTATS) 2011, Fort Lauderdale, FL, USA. Volume 15 of JMLR: W&CP 15. Copyright 2011 by the authors.
منابع مشابه
A New IRIS Segmentation Method Based on Sparse Representation
Iris recognition is one of the most reliable methods for identification. In general, itconsists of image acquisition, iris segmentation, feature extraction and matching. Among them, iris segmentation has an important role on the performance of any iris recognition system. Eyes nonlinear movement, occlusion, and specular reflection are main challenges for any iris segmentation method. In thi...
متن کاملA New IRIS Segmentation Method Based on Sparse Representation
Iris recognition is one of the most reliable methods for identification. In general, itconsists of image acquisition, iris segmentation, feature extraction and matching. Among them, iris segmentation has an important role on the performance of any iris recognition system. Eyes nonlinear movement, occlusion, and specular reflection are main challenges for any iris segmentation method. In thi...
متن کاملModified Convex Data Clustering Algorithm Based on Alternating Direction Method of Multipliers
Knowing the fact that the main weakness of the most standard methods including k-means and hierarchical data clustering is their sensitivity to initialization and trapping to local minima, this paper proposes a modification of convex data clustering in which there is no need to be peculiar about how to select initial values. Due to properly converting the task of optimization to an equivalent...
متن کاملDecentralized jointly sparse optimization
A set of vectors (or signals) are jointly sparse if all their nonzero entries are found on a small number of rows (or columns). Consider a network of agents that collaboratively recover a set of jointly sparse vectors from their linear measurements . Assume that every agent collects its own measurement and aims to recover its own vector taking advantages of the joint sparsity structure. This pa...
متن کاملIRWIN AND JOAN JACOBS CENTER FOR COMMUNICATION AND INFORMATION TECHNOLOGIES Reduce and Boost: Recovering Arbitrary Sets of Jointly Sparse Vectors
The rapid developing area of compressed sensing suggests that a sparse vector lying in an arbitrary high dimensional space can be accurately recovered from only a small set of non-adaptive linear measurements. Under appropriate conditions on the measurement matrix, the entire information about the original sparse vector is captured in the measurements, and can be recovered using efficient polyn...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011